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Abstract
In a concept of simulating the quantum logic with vector solitons by the author
(Janutka 2006 J. Phys. A: Math. Gen. 39 12505), the soliton polarization
is thought of as a state vector of a system of cebits (classical counterparts
of qubits) switched via collisions with other solitons. The advantage of this
method of information processing compared to schemes using linear optics
is the possibility of the determination of the information-register state in
a single measurement. Minimization of the information-processing error for
different optical realizations of the logical systems is studied in the framework
of a quantum analysis of soliton fluctuations. The problem is considered with
relevance to general difficulties of the quantum error-correction schemes for
the classical analogies of the quantum-information processing.

PACS numbers: 03.75.Mn, 42.50.Md, 42.50.Lc, 42.65.Tg, 42.79.Ta

1. Introduction

Classical optical systems simulating the quantum logic are of interest because of high
manipulating power enabling simple realization of logical gates [1, 2]. This simplicity is
valuable in spite of disadvantages resulting from the classicality of the information that
is transformed. The state of these systems is represented by a 2n-component vector of
complex numbers similar to the n-qubit state vector and any quantum-logic algorithm could
be performed using such a classical system. However, the information encoded in this vector
differs from genuine quantum information by the lack of the property of nonlocality since
the classical counterparts of qubits (called cebits) cannot be identified with separate particles.
The negative consequences of this fact are the exponential increase of resources necessary
to simulate any logical operation with the number of cebits and uselessness of these systems
for quantum communication purposes. It leads to elongation of the information-processing
time compared to genuine quantum-information processing, thus limiting the size of the
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information register. Such quantum-logic simulators can be applied for testing non-trivial but
small quantum circuits.

On the other hand, the quantum-logic simulation using linear optics demands perfect
calibration of a system of many optical elements (beam splitters and phase shifters) [1].
Furthermore, the measurement of the state parameters (phases and amplitudes of the 2n

components of the single-photon state vector) demands many repetitions of single-photon
transformations performed on consecutive indistinguishable photons. However, it is difficult
to create a big number of indistinguishable photons. In [2], an alternative simulator of the
quantum logic using nonlinear optics has been proposed. It uses a classical object—a multi-
component vector soliton as a register of information instead of the quantum object—a single
photon. The information is transformed there via collisions with other solitons instead of using
passive optical elements (switching solitons of specific parameters—velocity and polarization
simulate the action of quantum logical gates). The advantage of this method is simplicity of
measurement of the register-state parameters compared to the measurement in the linear-optics
scheme, which is described in detail in the following section.

In the present paper, in order to determine requirements necessary for ensuring the fault
tolerance of this information-processing method, I study the time dependence of quantum
fluctuations of the soliton parameters following the method of Haus and Lai [3, 4]. In
particular, the evolution of the fluctuations of the polarization-vector components (the state
vector) due to the soliton transmission and collisions is investigated. The transmission-induced
fluctuations of modules of these polarization components are found to be independent of
time while the fluctuations of their phases depend linearly on time essentially influencing
the information-processing error. Values of these phase fluctuations determine efficiency of
the information switching using the pulse collisions. It is found that the error induced by the
register-pulse collisions with the switching solitons is not influenced by the time-dependent
phase fluctuations.

A consequence of the lack of nonlocality of the information is inefficiency of usual
quantum error-correcting networks. One cannot easily discard encoding cebits after the error
correction, since they are not connected to separate particles as qubits are [5]. Furthermore,
the error channels are not one-qubit channels (e.g. bit-flip or phase-flip channels) since a
fluctuation of a single state-vector component contributes to error of many cebits. A simple
method of the correction of the outcome-information error via repeating the algorithm (which
would be inefficient for genuine quantum-computing systems) is proposed.

Following [2], two different realizations of the multi-component vector solitons are
considered. These are the solitons propagated in the multi-component Bose–Einstein
condensate (self-focusing (SF) described with multi-component nonlinear Schrödinger (NLS)
equation) and in media displaying the self-induced transparency (SIT) of a V-bouquet
configuration of [6].

Details of difficulties of optical realizations of the quantum-information processing and
its simulation connected to the readout of the information-register state are described in
section 2. They motivate studying the nonlinear realization of the quantum-logic simulator.
In section 3, basics of vector solitons of the SF and SIT types are given including one-pulse
solutions of their equations of motion as well as the transformation of the soliton polarizations
under the collision of two pulses. In section 4, the time dependence of fluctuations of the
soliton parameters and the collision-induced exchange of these fluctuations are analyzed. The
concept of the quantum-logic simulation via collisions of vector soliton is outlined in section 5.
The main source of information-processing errors and a method of their correction are
discussed in section 6.
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2. State readout of information register

In order to better motivate the interest in a vector-soliton-based logic, I compare consequences
of the register-state readout method relevant to linear-optics- and to vector-soliton-based
schemes of the quantum-logic simulation on the application complexity of both schemes.

2.1. Linear-optics quantum-logic simulator

The optical quantum-logic simulator proposed in [1] is a system of passive optical elements
(beam splitters and phase shifters) creating an interferometer of 2n income and 2n outcome
arms, where n is a number of cebits. A single photon passing through this processor represents
an n-cebit state vector (of components cj ≡ |cj | eiϕj , j = 1, 2, . . . , 2n each connected to one
outcome arm of the interferometer) being an information register. The number of optical
elements used in order to perform any logical operation of the quantum universal set (of:
CNOT, Hadamard, π/8, phase gates [7]) with such a device grows exponentially with n.

Since one is unable to determine 2n components of the outcome-state vector of the single
photon via any measurement, one has to repeat the logical operations with many identical
photons passing through the optical system. In order to measure the phase changes of the
2n register-state parameters with relevance to a common control phase, we need to operate
on a state vector of more than 2n components. If our register state was a projection of a
2n+1-component vector and 2n control components c ≡ |c| eiϕ were identical, we can measure
the phases ϕj and the amplitudes |cj | of the register parameters via using 2n interferometers
consisting of single 50:50 beam splitters and counting photons at the outcome arms of the
interferometers. Income arms of each of the interferometers are: one outcome arm of the
logical subsystem (a register arm) and one outcome arm of the control subsystem (a control
arm).

Let the numbers of photons counted at the outcome arms of the interferometer be denoted
as n′, n′

j and the number of photons in the income control arm denoted as n is known. The
number of photons coming into the register arm nj = N |cj |2 is to be determined as well as
the quantum-phase difference of photons at both income arms ϕj − ϕ. Here, N denotes the
whole number of photons passing through the system. The relation between the annihilation
operators of photons in the income (a, aj ) and outcome (a′, a′

j ) arms(
a′

a′
j

)
= 1√

2

(
1 −i
−i 1

)(
a

aj

)
≡ B

(
a

aj

)
(1)

leads to

a
′†
j a′

j − a′†a′ = i
(
a†aj + a

†
j a
)
. (2)

Since
〈
a†aj + a

†
j a
〉 ∝ sin(ϕj − ϕ), one finds [8]

sin(ϕj − ϕ) = 1

2

n′
j − n′
√

nnj

. (3)

Using n+ nj = n′+ n′
j , the amplitude and phase of the state-vector parameter of the information

register can be determined as follows:

|cj | =
√

(n′ + n′
j − n)/N,

ϕj − ϕ = arcsin


1

2

n′
j − n′√

n(n′ + n′
j − n)


 .

(4)
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Let us note that the necessity of using many photons in order to measure the state
parameters is a source of inefficiency of linear-optics schemes of the quantum-information
processing [9, 10]. However, even the implementation of the present linear-optics simulation
of the quantum logic is connected to some difficulty resulting from consideration of the
uncertainty of the phase-cosine operator

(
�

a†aj +a
†
j a

)2 ≡ 〈A|(B† ⊗ 1)
(
a†aj + a

†
j a
)2

(B ⊗ 1)|A〉 − 〈A|(B† ⊗ 1)
(
a†aj + a

†
j a
)
(B ⊗ 1)|A〉2

〈A|(B† ⊗ 1)
(
a†aj + a

†
j a
)
(B ⊗ 1)|A〉2

= 2N − N(N − 1)(|cj |2 − |c|2)2 − N(cc∗
j + cj c

∗)2

N2(cc∗
j + cj c∗)2

. (5)

Here |A〉 denotes the outcome state of the processor

|A〉 ∝ (a†
1 + a

†
2 + · · · + a

†
2n + a† + · · ·︸ ︷︷ ︸

2n+1

)N |0〉. (6)

When the probabilities of photon observation at any outcome arm of the processor are similar
(|cj |2 = |c|2 = 2−n−1), one estimates �

a†aj +a
†
j a

∼ (2n/N)1/2. Thus, the phase measurement

demands much more repetitions of the algorithm than 2n using consecutive indistinguishable
photons. The indistinguishability of photons coming into the processor is important for
avoiding decoherence which would be present when the optical beam was broadened. If the
incoming beam was not perfectly coherent, its decoherence would increase after the beam
passing through each optical element. The necessity of creating many indistinguishable
photons is the reason of technical difficulties. Since these photons have to be created from a
common source one after one, the effective information-processing time is much longer than
the time of single-photon transmission.

2.2. Quantum-logic simulation using vector solitons

In the vector-soliton based scheme of the quantum-logic simulation [2], the n-cebit information
register is represented by the 2n-component vector of the soliton polarization (c1, c2, . . . , c2n ).
The field-component envelopes of a multi-chromatic pulse εj (x, τ ) are equal to cj ε(x, τ ) and

the signal intensity of the j th component is defined as wj(x) ≡ ∫ τ+T

τ
|εj (x, τ ′)|2 dτ ′, where

T is a time much longer than the pulse width divided by the soliton velocity.
Following the above measurement scheme relevant to the register-state readout for the

linear-optics quantum-logic simulator, we consider data transmission with a 2n+1-component
pulse. It’s polarization vector contains 2n identical control components c. Performing the
transformation of two polarization components(

c′

c′
j

)
= 1√

2

(
1 −i
−i 1

)(
c

cj

)
(7)

via a collision with another (switching) soliton (following the method described in section 5)
and measuring the outcoming-signal intensities w′

(j)(x) ≡ ∫ τ+T

τ
|c′

(j)|2|ε(x, τ ′)|2 dτ ′, one
determines the polarization-component amplitudes and phases. Using the equality |w| +
|wj | = |w′| + |w′

j |, one arrives at

|cj | =
√

(w′ + w′
j − w)/W,

ϕj − ϕ = arcsin


1

2

w′
j − w′√

w(w′ + w′
j − w)


 ,

(8)
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where W(x) ≡ ∫ τ+T

τ
|ε(x, τ ′)|2 dτ ′ is the intensity of the multi-component pulse as a whole.

Since the pulse-component intensities are classical observables, they can be determined at a
single act of measurement. This fact makes vector solitons an attractive alternative of the
single photons for using them as multi-cebit information registers.

3. Vector-soliton propagation and collisions

I outline realizations of the multi-component vector solitons in SF media and in media
displaying SIT studying the pulse equations of motion and their one-soliton solutions. A
general polarization transform performed via the soliton collision is written.

3.1. One-soliton solution of NLS equation

The envelope of an electromagnetic wave propagating in a nonlinear (Kerr) medium is
described with the two-component NLS equation. It was solved by Manakov [11] within the
inverse-scattering approach [12]. The propagation of two-component vector solitons predicted
by him has been observed in different optical systems [13–15], and they were considered as
the (classical) information bits switched via collisions with other Manakov solitons [16, 17].
Recently, many-component vector solitons (of the Manakov type) are observed in the multi-
component atomic Bose–Einstein condensates [18]. These are matter waves described with
multi-component Gross–Pitaevskii equation which is equivalent to the multi-component NLS
equation [19, 20].

Considering the propagation of a multi-chromatic pulse, one uses the N-component NLS
equation

iεj,τ + εj,xx +
1

2

N∑
k=1

|εk|2εj = 0, (9)

that is the equation of motion of the pulse-component envelopes. Here, A,τ ≡ ∂A/∂τ,A,x ≡
∂A/∂x denote differentials over renormalized time and position variables. The one-soliton
solution of (9) takes the form

εj (x, τ ) = 4icj ζ
′′ exp[i2ζ ′x + i4(ζ ′2 − ζ ′′2)τ ] sech[2ζ ′′(x − x0) + 8ζ ′ζ ′′τ ], (10)

where cj ≡ |cj | eiϕj denote components of a polarization vector of the unit length. The
constant ζ (ζ ′ ≡ Re ζ, ζ ′′ ≡ Im ζ ) is called a (complex) wavenumber.

3.2. One-soliton solution of SIT equations

Let us consider an (N + 1)-level atomic medium coupled to an N-component optical pulse in
such a way that the lowest atomic level is linearly coupled to others (a V-bouquet configuration
of [6]) [21]. The pulse propagation is described with the Maxwell–Bloch equations and the
slowly-varying envelope approximation is used for the decomposition of the Maxwell wave
equation (see, e.g., [22]). The electronic-level occupation amplitudes b, aj (state-vector
components) for the ground and excited levels, respectively, satisfy

∑N
j=1 |aj |2 + |b|2 = 1.

A spectral distribution g(α) characterizing the inhomogeneous broadening of the medium is
normalized to unity,

∫∞
−∞ g(α) dα = 1. Following [23, 24], the evolution of the density-

matrix components λij ≡ 2aia
∗
j , λj0 ≡ 2ajb

∗, λ00 ≡ 2bb∗ and of the envelopes of the pulse
components εj is described with

εj,x = 〈λj0〉, (11a)

λj0,τ + 2iζ ′λj0 = 1

2
εjλ00 − 1

2

N∑
k=1

εkλjk, (11b)
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λij,τ = 1

2
εiλ

∗
j0 +

1

2
ε∗
j λi0, (11c)

λ00,τ = −1

2

N∑
k=1

εkλ
∗
k0 − 1

2

N∑
k=1

ε∗
k λk0. (11d)

Here 〈A〉 = ∫∞
−∞ A(α)g(α) dα, and a frequency detuning ζ ′ is assumed to be the same for all

the coupled electromagnetic modes. Equations (11b)–(11d) are equivalent to

aj,τ + iζ ′aj = 1

2
εjb, b,τ − iζ ′b = −1

2

N∑
k=1

ε∗
k ak. (12)

Solving the system of (11a) and (12) with the inverse scattering method, one finds the one-
soliton scattering potentials

εj (x, τ ) = 4cj ζ
′′ exp{iω′(ζ )x + i2ζ ′τ } sech{2ζ ′′[τ − τ0 + x/v(ζ )]} (13)

for aj = cja and
∑N

j=1 |cj |2 = 1. Here 2ζ ′′/v(ζ ) ≡ ω′′(ζ ) and ω′(ζ ) + iω′′(ζ ) ≡
− 1

2

∫∞
−∞

g(α) dα

ζ−α
.

3.3. Soliton collisions

Following Manakov [11], the collision of two vector solitons characterized by the polarizations
c(1), c(2) and by the wavenumbers ζ1, ζ2, respectively, results in the change of the polarization
of both solitons according to the transformation

c′
(1) = 1

χ

ζ ∗
1 − ζ2

ζ ∗
1 − ζ ∗

2

[
c(1) +

ζ2 − ζ ∗
2

ζ ∗
2 − ζ ∗

1

(c∗
(2) · c(1))c(2)

]
,

c′
(2) = 1

χ

ζ ∗
1 − ζ2

ζ1 − ζ2

[
c(2) +

ζ1 − ζ ∗
1

ζ2 − ζ1
(c∗

(1) · c(2))c(1)

]
,

(14)

where

χ ≡ χ(c(1), c(2)) = |ζ1 − ζ ∗
2 |

|ζ1 − ζ2|
[

1 +
(ζ1 − ζ ∗

1 )(ζ ∗
2 − ζ2)

|ζ1 − ζ2|2 |c∗
(1) · c(2)|2

]1/2

. (15)

The wavenumbers do not change due to the collision. The above transformation is relevant
for the collisions of the SF pulses as well as of the SIT pulses, since the inverse scattering
equations (of the form of (12)) are similar for both cases (see [6, 11] for comparison).

4. Quantum fluctuations of soliton parameters

Equations of motion for the quantum fluctuations of the soliton parameters are solved for both
types of multi-component (SF and SIT) pulses. A transformation of these fluctuations due to
the soliton collision is analyzed.

4.1. Fluctuations of SF soliton

Let us evaluate the time dependence of the fluctuations of the soliton parameters ζ ′′
j ≡

|cj |ζ ′′, ϕj , ζ
′, x0. We use the method introduced in [3] for the scalar SF solitons and developed

with relevance to the two-component (Manakov) SF solitons in [25]. The linear (in the
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soliton-parameter fluctuations) parts of the deviation of the field-operator components from
their average values (10) take the form

�εj (x, τ ) = εj,x0(x, τ )�x0 + εj,ζ ′(x, τ )�ζ ′ +
N∑

k=1

εj,ϕk
(x, τ )�ϕk +

N∑
k=1

εj,ζ ′′
k
(x, τ )�ζ ′′

k .

(16)

Here �x0,�ζ ′,�ϕk,�ζ ′′
k denote the operators of the fluctuations of the parameters

x0, ζ
′, ϕk, ζ

′′
k , respectively. Performing the transformation of field-average derivatives into


ε̃j,x0 = εj,x0

ε̃j,ζ ′ = εj,ζ ′ − 2x0εj,ϕj

ε̃j,ϕk
= εj,ϕk

ε̃j,ζ ′′
k

= εj,ζ ′′
k
,

(17)

one finds that Im
∫∞
−∞ ε̃∗

j,A(x, τ )ε̃j,B(x, τ ) dx = 0 for all (A,B) pairs excluding (x0, ζ
′) and

(ϕk, ζ
′′
l ) which satisfy

Im
N∑

j=1

∫ ∞

−∞
ε̃∗
j,x0

(x, τ )ε̃j,ζ ′(x, τ ) dx = 8ζ ′′,

Im
N∑

j=1

∫ ∞

−∞
ε̃∗
j,ϕk

(x, τ )ε̃j,ζ ′′
l
(x, τ ) dx = −16

ζ ′′
l

ζ ′′ δkl + 4
ζ ′′
l ζ ′′2

k

ζ ′′3 .

(18)

Following the above relations, we project the field deviation onto the subspaces relevant
to the basis functions ε̃j,A(x, τ ). For a description shortening, let us define a functional
I [A(x, τ)] ≡ −i

∫∞
−∞[A(x, τ)�εj (x, τ ) − h.c.] dx relating to the projections. One finds

I [ε̃∗
j,x0

(x, τ )] = 16ζ ′′�ζ ′,

I [ε̃∗
j,ζ ′(x, τ )] = −16ζ ′′�x0,

I [ε̃∗
j,ϕk

(x, τ )] = − 1

ζ ′′3

(
32ζ ′′

k ζ ′′2�ζ ′′
k − 8ζ ′′2

k

N∑
l=1

ζ ′′
l �ζ ′′

l

)
,

I [ε̃∗
j,ζ ′′

k
(x, τ )] = 1

ζ ′′3

(
32ζ ′′

k ζ ′′2�ϕk − 8ζ ′′
k

N∑
l=1

ζ ′′2
l �ϕl

)
+

1

ζ ′′ 48x0ζ
′′
k �ζ ′.

(19)

Since the coefficients of the field-deviation expansion in the Heisenberg-picture fluctuation
operators differ from those of the above expansion in the Schrödinger-picture operators
about a time-dependent phase factor, they are transformed from the Schrödinger picture
to the Heisenberg one by taking them at time zero and moving in space, ε̃j,A(x, τ ) →
ε̃j,A(x + 4ζ ′τ, 0)exp[−i4(ζ ′2 + ζ ′′2)τ ]. We determine the time dependence of the soliton-
parameter fluctuations as follows:

I
[
ε̃∗
j,x0

(x + 4ζ ′τ, 0) ei4(ζ ′2+ζ ′′2)τ ] = 16ζ ′′�ζ ′(τ ),

I
[
ε̃∗
j,ζ ′(x + 4ζ ′τ, 0) ei4(ζ ′2+ζ ′′2)τ ] = −16ζ ′′�x0(τ ),

I
[
ε̃∗
j,ϕk

(x + 4ζ ′τ, 0) ei4(ζ ′2+ζ ′′2)τ ] = − 1

ζ ′′3

[
32ζ ′′

k ζ ′′2�ζ ′′
k (τ ) − 8ζ ′′2

k

N∑
l=1

ζ ′′
l �ζ ′′

l (τ )

]
,

I
[
ε̃∗
j,ζ ′′

k
(x + 4ζ ′τ, 0) ei4(ζ ′2+ζ ′′2)τ ]

= 1

ζ ′′3

[
32ζ ′′

k ζ ′′2�ϕk(τ) − 8ζ ′′
k

N∑
l=1

ζ ′′2
l �ϕl(τ )

]
+

1

ζ ′′ 48x0ζ
′′
k �ζ ′(τ ).

(20)
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Evaluating the integrals on the left-hand side of (20), one arrives at the time dependences of
the fluctuation operators

�x0(τ ) = �x0 − 4τ�ζ ′,
�ζ ′(τ ) = �ζ ′,

�ϕk(τ ) = �ϕk − 8τ

N∑
l=1

ζ ′′
l �ζ ′′

l ≡ �ϕk + δϕ(τ),

�ζ ′′
k (τ ) = �ζ ′′

k .

(21)

The characteristic topic of the phase fluctuations �ϕk(τ) is that their time-dependent part
δϕ(τ) is similar for all N modes, which was found earlier for the two-component SF solitons
[25].

4.2. Fluctuations of SIT soliton

In order to determine the position dependence of the fluctuations of ζ ′′
j ≡ |cj |ζ ′′, ϕj , ζ

′, τ0,
we adapt the analysis of quantum fluctuations of the SF vector-soliton parameters from
subsection 4.1 to the SIT vector solitons following analogous considerations for the scalar
SIT solitons [4]. The part of the field-component deviation linear in the fluctuation operators
takes the form similar to that of (16)

�εj (x, τ ) = εj,τ0(x, τ )�τ0 + εj,ζ ′(x, τ )�ζ ′ +
N∑

k=1

εj,ϕk
(x, τ )�ϕk +

N∑
k=1

εj,ζ ′′
k
(x, τ )�ζ ′′

k .

(22)

We establish relations between the field-average derivatives over the soliton parameters (the
basis functions) transforming them into



ε̃j,τ0 = εj,τ0

ε̃j,ζ ′ = εj,ζ ′ + (2x/v − xω′
,ζ ′ − 2τ0)εj,ϕj

ε̃j,ϕk
= εj,ϕk

ε̃j,ζ ′′
k

= εj,ζ ′′
k

+ x(1/v),ζ ′′
ζ ′′
k

ζ ′′ εj,τ0 .

(23)

The integrals Im
∫∞
−∞ ε̃∗

j,A(x, τ )ε̃j,B(x, τ ) dτ are equal to zero for all the (A,B) pairs except
(τ0, ζ

′) and (ϕk, ζ
′′
l ) which satisfy

Im
N∑

j=1

∫ ∞

−∞
ε̃∗
j,τ0

(x, τ )ε̃j,ζ ′(x, τ ) dτ = 8ζ ′′, (24)

Im
N∑

j=1

∫ ∞

−∞
ε̃∗
j,ϕk

(x, τ )ε̃j,ζ ′′
l
(x, τ ) dτ = −16

ζ ′′
l

ζ ′′ δkl + 4
ζ ′′
l ζ ′′2

k

ζ ′′3 . (25)

Searching for the position dependence of the soliton-parameter fluctuations, we project the field
deviation onto the subspaces relevant to the basis functions ε̃j,A(x, τ ). Defining a functional
J [A(x, τ)] ≡ −i

∫∞
−∞[A(x, τ)�εj (x, τ ) − h.c.] dτ , we find

J
[
ε̃∗
j,τ0

(x, τ )
] = 16ζ ′′�ζ ′,

J
[
ε̃∗
j,ζ ′(x, τ )

] = −16ζ ′′�τ0 + 16x(1/v),ζ ′′

N∑
l=1

ζ ′′
l �ζ ′′

l ,
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J
[
ε̃∗
j,ϕk

(x, τ )
] = − 1

ζ ′′3

(
32ζ ′′

k ζ ′′2�ζ ′′
k − 8ζ ′′2

k

N∑
l=1

ζ ′′
l �ζ ′′

l

)
,

J
[
ε̃∗
j,ζ ′′

k
(x, τ )

] = 1

ζ ′′3

(
32ζ ′′

k ζ ′′2�ϕk − 8ζ ′′
k

N∑
l=1

ζ ′′2
l �ϕl

)
+

1

ζ ′′ 24(xω′
,ζ ′ − 2x/v + 2τ0)ζ

′′
k �ζ ′.

(26)

When the field deviation in Heisenberg-picture-like operators of fluctuations (depending on
the space coordinate) is expanded, one takes the coefficients of expansion in the Schrödinger-
picture-like operators in the initial position and moved in time. Then, one finds

J
[
ε̃∗
j,τ0

(0, τ + x/v) ei(−ω′+2ζ ′/v)x
] = 16ζ ′′�ζ ′(x),

J
[
ε̃∗
j,ζ ′(0, τ + x/v) ei(−ω′+2ζ ′/v)x

] = −16ζ ′′�τ0(x) + 16x(1/v),ζ ′′

N∑
l=1

ζ ′′
l �ζ ′′

l (x),

J
[
ε̃∗
j,ϕk

(0, τ + x/v) ei(−ω′+2ζ ′/v)x
] = − 1

ζ ′′3

[
32ζ ′′

k ζ ′′2�ζ ′′
k (x) − 8ζ ′′2

k

N∑
l=1

ζ ′′
l �ζ ′′

l (x)

]
,

J
[
ε̃∗
j,ζ ′′

k
(0, τ + x/v) ei(−ω′+2ζ ′/v)x

] = 1

ζ ′′3

[
32ζ ′′

k ζ ′′2�ϕk(x) − 8ζ ′′
k

N∑
l=1

ζ ′′2
l �ϕl(x)

]

+
1

ζ ′′ 24(xω′
,ζ ′ − 2x/v + 2τ0)ζ

′′
k �ζ ′(x).

(27)

Evaluating the integrals on the left-hand sides of (27), we arrive at the position dependences
of the fluctuations

�τ0(x) = �τ0 − x(1/v),ζ ′�ζ ′ − 3

2ζ ′′2 xω′
,ζ ′

N∑
l=1

ζ ′′
l �ζ ′′

l ,

�ζ ′(x) = �ζ ′,

�ϕk(x) = �ϕk +
2

3
x(1/v),ζ ′′ζ ′′�ζ ′ +

1

ζ ′′ xω′
,ζ ′′

N∑
l=1

ζ ′′
l �ζ ′′

l ≡ �ϕk + δϕ(x)

�ζ ′′
k (x) = �ζ ′′

k .

(28)

4.3. Collision-induced fluctuation exchange

From (14) and (15), the polarization parameters ζ ′′
1k, ϕ1k of one of the colliding solitons

transform via the collision into

(ζ ′′
1k)

′ = (ζ ′′
1k)

′(ζ ′
1j , ζ

′
2j , ζ

′′
1j , ζ

′′
2j , ϕ1j , ϕ2j ),

(ϕ1k)
′ = (ϕ1k)

′ (ζ ′
1j , ζ

′
2j , ζ

′′
1j , ζ

′′
2j , ϕ1j , ϕ2j ),

(29)

respectively. Assuming that the collision time is very short compared to the pulse-propagation
time, we determine fluctuations of these parameters after the collision �(ζ ′′

1k)
′,�(ϕ1k)

′ with
dependence on the parameter fluctuations before the collision. For our purposes of a long-
time processing with a soliton representing a system of cebits, we can neglect the dependence
of the polarization on the time-independent (SF) or position-independent (SIT) fluctuations
�ζ ′

ik, �ζ ′′
ik (i = 1, 2). Also, we neglect the time (position) dependence of the fluctuations of

ϕ2k , assuming that the soliton indexed by ‘2’ (a switching soliton) propagates through much
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shorter time than that indexed by ‘1’ (the information register). Thus, in the case of the SF-
soliton collision, for a long time of the soliton ‘1’ propagation, such that |〈�ϕ1k〉| � |〈δϕ1(τ )〉|
(where δϕ1(τ ) is defined by (21)),

�(ζ ′′
1k)

′(τ +
coll

) =
N∑

j=1

∂(ζ ′′
1k)

′

∂ϕ1j

�ϕ1j

(
τ−

coll

)
+ O(�ζ ′

ij , �ζ ′′
ij , �ϕ2j ),

�(ϕ1k)
′(τ +

coll

) =
N∑

j=1

∂(ϕ1k)
′

∂ϕ1j

�ϕ1j

(
τ−

coll

)
+ O(�ζ ′

ij , �ζ ′′
ij , �ϕ2j ).

(30)

Here τcoll denotes the moment of the collision. In the case of the SIT-soliton collision, one
changes τcoll in (30) into the position of the collision xcoll.

5. Collision-based logical gates

We consider a 2n-component vector soliton of the wavenumber ζ as an n-cebit register. Its
polarization (state) vector is transformed after the collision with another soliton (the switching
soliton). The parameters of the switching solitons sequences of which correspond to the
quantum gates; the polarizations cy, dy, . . . , and wavenumbers ζy, ηy, . . . are indexed with
y = a, b, . . . related to a cebit of the register which they switch. We assign consecutive
cebits a, b, . . . to the components c1, c2, . . . of the register polarization following the scheme
presented below for a three-cebit case. A state of the system of cebits a, b, c corresponding to
the lower, middle and upper wire of quantum circuits respectively is written with the vector

|c〉 = c1|0〉c|0〉b|0〉a + c2|0〉c|0〉b|1〉a + c3|0〉c|1〉b|0〉a + c4|0〉c|1〉b|1〉a
+ c5|1〉c|0〉b|0〉a + c6|1〉c|0〉b|1〉a + c7|1〉c|1〉b|0〉a + c8|1〉c|1〉b|1〉a. (31)

Due to the collision, a state vector of the register c transforms into L(cy)c. Following (14)
and (15), L(cy)c ≡ 1

χ(cy ,c)
L(cy)c, where

Lij (cy) =




ζ ∗ − ζy

ζ ∗ − ζ ∗
y

(
1 − ζy − ζ ∗

y

ζ ∗ − ζ ∗
y

cyic
∗
yj

)
i = j

− ζ ∗ − ζy

ζ ∗ − ζ ∗
y

ζy − ζ ∗
y

ζ ∗ − ζ ∗
y

cyic
∗
yj i = j

(32)

and χ(cy, c) = |L(cy)c|. Since all the logical gates relate to linear transformations of the
state vector while L(cy) is nonlinear in general, we consider such cy that L(cy) is unitary, thus
L(cy) = L(cy) and L(cy) is linear.

In [2], the parameters of the switching solitons changing the register-soliton state vector
via the collisions as the quantum gates of the universal set [7]; CNOT, Hadamard, π/8, phase
have been found. Here, I present the CNOT-gate realization in detail and outline the Hadamard
and π/8-gate realizations. The gate phase is known to be the composition of two π/8 gates.
Let us mention that the linearization of the c-vector transform (32) is approximate in the case
of the CNOT and Hadamard operations (as described in the following paragraph). I refer to
the resulting error at the end of section 6.

The CNOT operation consists of two steps; rotating the polarization vector of the register
and multiplying the resulting polarization by ‘−1’. Here, I present the first step addressing the
second step to [2]. The rotation demands satisfaction of the condition ζ ′′ � ζ ′′

y together with:
(i) ζ ′ = ζ ′

y or (ii) |ζ ′ − ζ ′
y | � ζ ′′

y . Following the first condition, our implementation of the
CNOT gate is approximate. The computation accuracy depends on the ratio of the register and
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switching pulse widths, thus it is determined by the method of creating the pulses. However,
use of the condition (ii) instead of (i) results in further loss of the computation accuracy. The
condition (i) can be fulfilled for collisions of the SIT pulses while it is inapplicable to SF pulses
since values 4ζ ′, 4ζ ′

y are equal to the SF-soliton velocities following (10). Thus, if ζ ′ = ζ ′
y ,

the relevant SF solitons cannot collide. Processing with two-cebit information, we take the
components of the polarization-vector of the switching soliton cyi ≡ |cyi | eiϕyi for y = a such
that

ca1 = ca2 = 0, |ca3| = |ca4| = 1√
2
, ϕa3 − ϕa4 = (2k + 1)π, (33)

where k is an integer and we find

L(ca) ≈ (−1)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (34)

Up to the multiplier ‘−1’, L(ca) is the CNOT operator represented graphically as the quantum
circuit above. The CNOT operation changing the cebit b can be performed with the switching
soliton of the polarization cb

cb1 = cb3 = 0, |cb2| = |cb4| = 1√
2
, ϕb2 − ϕb4 = (2k + 1)π, (35)

where k denotes an integer. The relevant transformation matrix of the register polarization is

L(cb) ≈ (−1)




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 . (36)

Performing a gate operation on the n-cebit state demands use of 2n−2-times more soliton
collisions than for two cebits. Let us study the implementation of the CNOT operation
increasing the number of cebits. We begin by adding a ‘free’ wire (a cebit unchanged via the
gate action) to the bottom of the circuit (34). The gate is realized via two collisions of the
eight-component register. The switching solitons of the polarizations cb, db such that

|cb6| = |cb8| = |db5| = |db7| = 1/
√

2,

ϕb6 − ϕb8 = (2k + 1)π, φb5 − φb7 = (2l + 1)π
(37)

transform the register following the matrix

[CNOT]1 ≡ L(db)L(cb) =




12 0 0 0
0 12 0 0
0 0 0 12

0 0 12 0


 , (38)

where 1n denotes the unit matrix of rank n. The addition of j free wires to the bottom of the
circuit (34) corresponds to the CNOT transformation represented as

[CNOT]j =




12j 0 0 0
0 12j 0 0
0 0 0 12j

0 0 12j 0


 , (39)
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which can be performed with 2j collisions of the register with the solitons of the linearly
independent polarizations

cy = [ 0, . . . , 0︸ ︷︷ ︸
2j+2−2j −1

, 1√
2

eiϕy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiϕy
]
,

dy = [ 0, . . . , 0︸ ︷︷ ︸
2j+2−2j −2

, 1√
2

eiφy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiφy , 0
]
,

ey = [ 0, . . . , 0︸ ︷︷ ︸
2j+2−2j −3

, 1√
2

eiψy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiψy , 0, 0
]
,

....

(40)

In the next step, we add m free wires to the top of the circuit. The relevant transformation
matrix is block diagonal with 2m identical [CNOT]j matrices on the diagonal. It can be
decomposed into the product of 2m block-diagonal matrices containing 2m − 1 unit blocks
and one [CNOT]j block. All of the operations corresponding to the factor matrices can
be performed independently with 2j collisions since the polarizations of their switching
solitons are linearly independent. The composition of these operations demands 2j+m = 2n−2

collisions.
The Hadamard operation is performed with similar assumptions on the real and imaginary

parts of the switching-soliton wavenumbers to those for the CNOT operation. One switches
the one-cebit register with the polarization of the switching soliton

ca =


√√

2 − 1

2
√

2
eiϕa ,−

√√
2 + 1

2
√

2
eiϕa


 , (41)

where ϕa is an arbitrary real number. In order to perform the π/8 operation on the one-cebit
register, one collides it with a soliton satisfying the condition for the wavenumbers

ζ ∗ − ζa

ζ ∗ − ζ ∗
a

= eiπ/4, (42)

and of the polarization ca = (0, 1). The generalization of the one-cebit operations to the case
when the register consists of n cebits demands compositions of 2n−1 consecutive switching
solitons and it follows the above considerations for the CNOT gate [2].

6. Errors and their correction

Errors of the present method of information processing result from the fluctuation of their
parameters and from the exchange of these fluctuations during the collision described in
section 4. Below, I show that the most important error to be corrected results from time
dependent propagational fluctuations of the phase factors �ϕk(τ) and that is not significantly
influenced by the soliton collisions.

Let us investigate the collision-induced exchange of the parameter fluctuations. We
note that all the switching solitons are pulses of one non-zero polarization component (π/8,
phase gates, the operation of the state-vector multiplication by a number) or of two non-zero
components (CNOT, Hadamard gates). Following (29), let ζ ′′

k eiϕk , (ζ ′′
k )′ ei(ϕk)

′
denote the

polarization components of the register before and after the collision, respectively. The one-
component switching solitons do not influence (ζ ′′

k )′ while the collisions with the switching
solitons of the CNOT gate result in exchanging two of the register-polarization components
ζ ′′
k eiϕk . Thus, for all these collisions, ∂(ζ ′′

k )′/∂ϕj = 0 and ∂(ϕk)
′/∂ϕj = 0 or ∂(ϕk)

′/∂ϕj = 1.
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The switching solitons of the Hadamard gate influence two of the register-polarization
components, say j th and k th components, as follows:

(ζ ′′
j )′ ei(ϕj )

′ = 1√
2

(
ζ ′′
j eiϕj + ζ ′′

k eiϕk
)
, (ζ ′′

k )′ ei(ϕk)
′ = 1√

2

(
ζ ′′
j eiϕj − ζ ′′

k eiϕk
)
, (43)

leaving unchanged other polarization components. Using (30), (43), one finds the propagation-
time dependent parts of the fluctuations �(ζ ′′

k )′ to be equal to zero

�(ζ ′′
k(j))

′(τ +
coll

) = δϕ
(
τ−

coll

) [∂(ζ ′′
k(j))

′

∂ϕk

+
∂(ζ ′′

k(j))
′

∂ϕj

]
+ O(�ζ ′

lm,�ζ ′′
lm,�ϕlm)

= O(�ζ ′
lm,�ζ ′′

lm,�ϕlm) (44)

and

�(ϕk(j))
′(τ +

coll

) = δϕ
(
τ−

coll

) [∂(ϕk(j))
′

∂ϕk

+
∂(ϕk(j))

′

∂ϕj

]
+ O(�ζ ′

lm,�ζ ′′
lm,�ϕlm)

= δϕ
(
τ−

coll

)
+ O(�ζ ′

lm,�ζ ′′
lm,�ϕlm). (45)

Thus, for all the soliton collisions relevant to the logical gates, we have shown that the
fluctuations �(ζ ′′

k )′ are independent of δϕ(τ) and

�(ϕk)
′(τ +

coll

) ≈ δϕ
(
τ−

coll

)
. (46)

This result indicates that the collisions of the long-time propagated register soliton do not
influence significantly its polarization fluctuations. The time dependences of the register-
polarization fluctuations are similar to those of the soliton propagated without collisions. This
property is irrelevant for soliton collisions in general, in particular, when the polarization
transform (14) is non-reducible to (32).

In order to establish the maximal time length of the register-soliton propagation (the
maximal time of the information processing), we ask which values of 〈�ϕk(τ)〉 are acceptable
for performing logical operations. Let us note that every soliton collision relates to an
unitary transformation in a two-dimensional subspace of the polarization-vector space. Such
transformations can be decomposed into rotations about Euler angles up to an additional phase
factor following U(α, β, γ, δ) = eiαRz(β)Ry(γ )Rz(δ), where

Ry(θ) =
(

cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

)
, Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
. (47)

In particular, the collisions composing into Hadamard and π/8 operations correspond to the
transformations [H ] = U(π/2, 0, π/2, π), [π/8] = U(π/8, 0, 0, π/4), respectively, while
the collisions of the CNOT gate are represented by

[CNOT] =
(

12 0
0 U(π/2, 0, π, π)

)
. (48)

The elementary operations of the logical gates (collisions) are efficient as long as α, γ, δ �
|〈�ϕk(τcoll)〉|, which leads to the condition |〈�ϕk(τcoll)〉| � π/8. Thus, any logical algorithm
can be efficiently performed for τcoll small enough to satisfy the last relation, while the value
of the phase fluctuation in this inequality 〈�ϕk(τcoll)〉 depends on initial conditions for the
soliton-parameter fluctuations.

As was mentioned in the introduction, the lack of nonlocality of many-cebit information
leads to inefficiency of usual quantum error-correcting networks. One needs another method
of the error minimization than those correcting bit-flip or phase-flip errors. An efficient way
is repeating the algorithm and averaging the results of the state-parameter measurements. It
is possible because of specific properties of the switching solitons relevant to the universal set



10826 A Janutka

of operations. In particular, the switching solitons realizing the CNOT and Hadamard gates
are of the property ζ ′′ � ζ ′′

y , where ζ ′′ and ζ ′′
y denote the wavenumber imaginary parts of

the register and switching solitons respectively. Following (14) and (15), with this condition,
the switching-soliton polarization remains unchanged after the collision with the consecutive
register solitons. The same is true for the π/8 gate if the additional to (42) condition ζ ′′ � ζ ′′

y

is satisfied. If a number of identically prepared register solitons were propagated through the
same circuit (collided with a sequence of the same switching pulses), their polarization would
be changed in the same way. When measuring the final polarizations of all the register pulses
and averaging them, the polarization fluctuations connected to different pulses cancel each
other.

For the case of the presence of many solitons in the system at the same time, in
particular, many registers, we assume that their interactions are pairwise (the pulse-polarization
transformation of a soliton colliding with a sequence of other solitons factorizes into a product
of transformations (14)) following [11]. This factorization has been proved recently to be
accurate [26], thus, it is not connected to an additional error.

Our error analysis was incomplete without discussing consequences of the assumption
on the big soliton-width difference ζ ′′ � ζ ′′

y that was important for the linearization of the
polarization transform (32) relevant to CNOT or Hadamard operations. In order to precise
this condition, we note that the relative error of the real and imaginary parts of the register-
polarization components induced by the CNOT or Hadamard operations is of the order of
ζ ′′/ζ ′′

y . Since this error grows linearly with the operation number, the pulse-amplitude ratio
ζ ′′/ζ ′′

y should be much smaller than the inverse of the number of the CNOT and Hadamard
operations in the algorithm. The same pulse-amplitude ratio is important for the efficiency of
the error-minimization method proposed above. In order to avoid cumulative influence of the
collisions with consecutive register pulses on the switching solitons, ζ ′′/ζ ′′

y should be much
smaller then the inverse of the register number. This condition is, however, satisfied when
there are more logical operations than the error-minimizing algorithm repetitions.
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